论文
相关研究成果在Nat Energy, Sci Adv, JACS, Angew. Chem., Adv. Mater, Joule, Chem, Mater. Today, J Energy Chem等学术期刊发表SCI论文70余篇,总引用13000余次,其中36篇为ESI高被引论文(领域引用前1%论文),H因子为50。
代表性论文:
[1] Zhang, Q.-K.+; Zhang, X.-Q.+; Wan, J.; Yao, N.; Song, T.-L.; Xie, J.; Hou, L.-P.; Zhou, M.-Y.; Chen, X.; Li, B.-Q.; Wen, R.; Peng, H.-J.; Zhang, Q.; Huang, J.-Q.*, Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 2023, 8: 725.
[2] Shi, P.; Fu, Z. H.; Zhou, M. Y.; Chen, X.; Yao, N.; Hou, L. P.; Zhao, C. Z.; Li, B.-Q.; Huang, J.-Q.; Zhang, X. Q. *; Zhang, Q.*, Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Sci. Adv. 2022, 8: eabq3445.
[3] Zhang, Q. K.; Sun, S. Y.; Zhou, M. Y.; Hou, L. P.; Liang, J. L.; Yang, S. J.; Li, B. Q.; Zhang, X. Q.*; Huang, J. Q.*, Reforming the uniformity of solid electrolyte interphase by nanoscale structure regulation for stable lithium metal batteries. Angew. Chem. Int. Ed. 2023, 62: e202306889.
[4] Shi, P.; Hou, L. P.; Jin, C. B.; Xiao, Y.; Yao, Y. X.; Xie, J.; Li, B. Q.; Zhang, X. Q.*; Zhang, Q.*, A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 2022, 144: 212.
[5] Hou, L.-P.; Li, Y.; Li, Z.; Zhang, Q.-K.; Li, B.-Q.; Bi, C.-X.; Chen, Z.-X.; Su, L.-L.; Huang, J.-Q.; Wen, R.*; Zhang, X.-Q.*; Zhang, Q.*, Electrolyte design for improving mechanical stability of solid electrolyte interphase in lithium–sulfur batteries. Angew. Chem. Int. Ed. 2023, 62: e202305466.
[6] Zhou, M.-Y.; Ding, X.-Q.; Ding, J.-F.; Hou, L.-P.; Shi, P.; Xie, J.; Li, B.-Q.; Huang, J.-Q.; Zhang, X. Q. *; Zhang, Q. *, Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule 2022, 6: 2122.
[7] Sun, S.-Y.; Yao, N.; Jin, C.-B.; Xie, J.; Li, X.-Y.; Zhou, M.-Y.; Chen, X.; Li, B.-Q.; Zhang, X.-Q.*; Zhang, Q.*, The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase. Angew. Chem. Int. Ed. 2022, 61: e202208743.
[8] Hou, L.-P.; Zhang, X.-Q.*; Yao, N.; Chen, X.; Li, B.-Q.; Shi, P.; Jin, C.-B.; Huang, J.-Q.; Zhang, Q.*, An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries. Chem 2022, 8: 1083.
[9] Hou, L.-P.; Yao, L.-Y.; Bi, C.-X.; Xie, J.; Li, B.-Q.; Huang, J.-Q.; Zhang, X.-Q.*, High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries. J. Energy Chem. 2022, 68: 300.
[10] Yao, L.-Y.; Hou, L.-P.; Song, Y.-W.; Zhao, M.; Xie, J.; Li, B.-Q.; Zhang, Q.; Huang, J.-Q.; Zhang, X.-Q.*, Recycling inactive lithium in lithium–sulfur batteries using organic polysulfide redox. J. Mater. Chem. A 2023, 11: 7441.
个人主页链接:
https://www.webofscience.com/wos/author/rid/R-2505-2017